Jaro Winkler¶
- 
class py_stringmatching.similarity_measure.jaro_winkler.JaroWinkler(prefix_weight=0.1)[source]¶
- Computes Jaro-Winkler measure. - The Jaro-Winkler measure is designed to capture cases where two strings have a low Jaro score, but share a prefix and thus are likely to match. - Parameters: - prefix_weight (float) – Weight to give to the prefix (defaults to 0.1). - 
prefix_weight¶
- float – An attribute to store the prefix weight. 
 - 
get_raw_score(string1, string2)[source]¶
- Computes the raw Jaro-Winkler score between two strings. - Parameters: - string1,string2 (str) – Input strings. - Returns: - Jaro-Winkler similarity score (float). - Raises: - TypeError– If the inputs are not strings or if one of the inputs is None.- Examples - >>> jw = JaroWinkler() >>> jw.get_raw_score('MARTHA', 'MARHTA') 0.9611111111111111 >>> jw.get_raw_score('DWAYNE', 'DUANE') 0.84 >>> jw.get_raw_score('DIXON', 'DICKSONX') 0.8133333333333332 
 - 
get_sim_score(string1, string2)[source]¶
- Computes the normalized Jaro-Winkler similarity score between two strings. Simply call get_raw_score. - Parameters: - string1,string2 (str) – Input strings. - Returns: - Normalized Jaro-Winkler similarity (float). - Raises: - TypeError– If the inputs are not strings or if one of the inputs is None.- Examples - >>> jw = JaroWinkler() >>> jw.get_sim_score('MARTHA', 'MARHTA') 0.9611111111111111 >>> jw.get_sim_score('DWAYNE', 'DUANE') 0.84 >>> jw.get_sim_score('DIXON', 'DICKSONX') 0.8133333333333332 
 
-