Affine Gap¶
- 
class py_stringmatching.similarity_measure.affine.Affine(gap_start=1, gap_continuation=0.5, sim_func=identity_function)[source]¶
- Returns the affine gap score between two strings. - The affine gap measure is an extension of the Needleman-Wunsch measure that handles the longer gaps more gracefully. For more information refer to the string matching chapter in the DI book (“Principles of Data Integration”). - Parameters: - gap_start (float) – Cost for the gap at the start (defaults to 1).
- gap_continuation (float) – Cost for the gap continuation (defaults to 0.5).
- sim_func (function) – Function computing similarity score between two characters, which are represented as strings (defaults to an identity function, which returns 1 if the two characters are the same and returns 0 otherwise).
 - 
gap_start¶
- float – An attribute to store the gap cost at the start. 
 - 
gap_continuation¶
- float – An attribute to store the gap continuation cost. 
 - 
sim_func¶
- function – An attribute to store the similarity function. 
 - 
get_raw_score(string1, string2)[source]¶
- Computes the affine gap score between two strings. This score can be outside the range [0,1]. - Parameters: - string1,string2 (str) – Input strings. - Returns: - Affine gap score betwen the two input strings (float). - Raises: - TypeError– If the inputs are not strings or if one of the inputs is None.- Examples - >>> aff = Affine() >>> aff.get_raw_score('dva', 'deeva') 1.5 >>> aff = Affine(gap_start=2, gap_continuation=0.5) >>> aff.get_raw_score('dva', 'deeve') -0.5 >>> aff = Affine(gap_continuation=0.2, sim_func=lambda s1, s2: (int(1 if s1 == s2 else 0))) >>> aff.get_raw_score('AAAGAATTCA', 'AAATCA') 4.4 
 - 
set_gap_continuation(gap_continuation)[source]¶
- Set gap continuation cost. - Parameters: - gap_continuation (float) – Cost for the gap continuation.