Source code for py_stringsimjoin.join.edit_distance_join

# edit distance join
from math import floor

from joblib import delayed, Parallel
from py_stringmatching.tokenizer.qgram_tokenizer import QgramTokenizer
import pandas as pd
import pyprind

from py_stringsimjoin.filter.prefix_filter import PrefixFilter
from py_stringsimjoin.index.prefix_index import PrefixIndex
from py_stringsimjoin.utils.generic_helper import convert_dataframe_to_array, \
    find_output_attribute_indices, get_attrs_to_project, \
    get_num_processes_to_launch, get_output_header_from_tables, \
    get_output_row_from_tables, remove_non_ascii, remove_redundant_attrs, \
    split_table, COMP_OP_MAP
from py_stringsimjoin.utils.missing_value_handler import \
    get_pairs_with_missing_value
from py_stringsimjoin.utils.simfunctions import get_sim_function
from py_stringsimjoin.utils.token_ordering import \
    gen_token_ordering_for_tables, order_using_token_ordering
from py_stringsimjoin.utils.validation import validate_attr, \
    validate_attr_type, validate_comp_op_for_sim_measure, validate_key_attr, \
    validate_input_table, validate_threshold, \
    validate_tokenizer_for_sim_measure, validate_output_attrs


[docs]def edit_distance_join(ltable, rtable, l_key_attr, r_key_attr, l_join_attr, r_join_attr, threshold, comp_op='<=', allow_missing=False, l_out_attrs=None, r_out_attrs=None, l_out_prefix='l_', r_out_prefix='r_', out_sim_score=True, n_jobs=1, show_progress=True, tokenizer=QgramTokenizer(qval=2)): """Join two tables using edit distance measure. Finds tuple pairs from left table and right table such that the edit distance between the join attributes satisfies the condition on input threshold. For example, if the comparison operator is '<=', finds tuple pairs whose edit distance between the strings that are the values of the join attributes is less than or equal to the input threshold, as specified in "threshold". Note: Currently, this method only computes an approximate join result. This is because, to perform the join we transform an edit distance measure between strings into an overlap measure between qgrams of the strings. Hence, we need at least one qgram to be in common between two input strings, to appear in the join output. For smaller strings, where all qgrams of the strings differ, we cannot process them. This method implements a simplified version of the algorithm proposed in `Ed-Join: An Efficient Algorithm for Similarity Joins With Edit Distance Constraints (Chuan Xiao, Wei Wang and Xuemin Lin), VLDB 08 <http://www.vldb.org/pvldb/1/1453957.pdf>`_. Args: ltable (DataFrame): left input table. rtable (DataFrame): right input table. l_key_attr (string): key attribute in left table. r_key_attr (string): key attribute in right table. l_join_attr (string): join attribute in left table. r_join_attr (string): join attribute in right table. threshold (float): edit distance threshold to be satisfied. comp_op (string): comparison operator. Supported values are '<=', '<' and '=' (defaults to '<='). allow_missing (boolean): flag to indicate whether tuple pairs with missing value in at least one of the join attributes should be included in the output (defaults to False). If this flag is set to True, a tuple in ltable with missing value in the join attribute will be matched with every tuple in rtable and vice versa. l_out_attrs (list): list of attribute names from the left table to be included in the output table (defaults to None). r_out_attrs (list): list of attribute names from the right table to be included in the output table (defaults to None). l_out_prefix (string): prefix to be used for the attribute names coming from the left table, in the output table (defaults to 'l\_'). r_out_prefix (string): prefix to be used for the attribute names coming from the right table, in the output table (defaults to 'r\_'). out_sim_score (boolean): flag to indicate whether the edit distance score should be included in the output table (defaults to True). Setting this flag to True will add a column named '_sim_score' in the output table. This column will contain the edit distance scores for the tuple pairs in the output. n_jobs (int): number of parallel jobs to use for the computation (defaults to 1). If -1 is given, all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used (where n_cpus is the total number of CPUs in the machine). Thus for n_jobs = -2, all CPUs but one are used. If (n_cpus + 1 + n_jobs) becomes less than 1, then no parallel computing code will be used (i.e., equivalent to the default). show_progress (boolean): flag to indicate whether task progress should be displayed to the user (defaults to True). tokenizer (Tokenizer): tokenizer to be used to tokenize the join attributes during filtering, when edit distance measure is transformed into an overlap measure. This must be a q-gram tokenizer (defaults to 2-gram tokenizer). Returns: An output table containing tuple pairs that satisfy the join condition (DataFrame). """ # check if the input tables are dataframes validate_input_table(ltable, 'left table') validate_input_table(rtable, 'right table') # check if the key attributes and join attributes exist validate_attr(l_key_attr, ltable.columns, 'key attribute', 'left table') validate_attr(r_key_attr, rtable.columns, 'key attribute', 'right table') validate_attr(l_join_attr, ltable.columns, 'join attribute', 'left table') validate_attr(r_join_attr, rtable.columns, 'join attribute', 'right table') # check if the join attributes are not of numeric type validate_attr_type(l_join_attr, ltable[l_join_attr].dtype, 'join attribute', 'left table') validate_attr_type(r_join_attr, rtable[r_join_attr].dtype, 'join attribute', 'right table') # check if the input tokenizer is valid for edit distance measure. Only # qgram tokenizer can be used for edit distance. validate_tokenizer_for_sim_measure(tokenizer, 'EDIT_DISTANCE') # check if the input threshold is valid validate_threshold(threshold, 'EDIT_DISTANCE') # check if the comparison operator is valid validate_comp_op_for_sim_measure(comp_op, 'EDIT_DISTANCE') # check if the output attributes exist validate_output_attrs(l_out_attrs, ltable.columns, r_out_attrs, rtable.columns) # check if the key attributes are unique and do not contain missing values validate_key_attr(l_key_attr, ltable, 'left table') validate_key_attr(r_key_attr, rtable, 'right table') # convert threshold to integer (incase if it is float) threshold = int(floor(threshold)) # set return_set flag of tokenizer to be False, in case it is set to True revert_tokenizer_return_set_flag = False if tokenizer.get_return_set(): tokenizer.set_return_set(False) revert_tokenizer_return_set_flag = True # remove redundant attrs from output attrs. l_out_attrs = remove_redundant_attrs(l_out_attrs, l_key_attr) r_out_attrs = remove_redundant_attrs(r_out_attrs, r_key_attr) # get attributes to project. l_proj_attrs = get_attrs_to_project(l_out_attrs, l_key_attr, l_join_attr) r_proj_attrs = get_attrs_to_project(r_out_attrs, r_key_attr, r_join_attr) # Do a projection on the input dataframes to keep only the required # attributes. Then, remove rows with missing value in join attribute from # the input dataframes. Then, convert the resulting dataframes into ndarray. ltable_array = convert_dataframe_to_array(ltable, l_proj_attrs, l_join_attr) rtable_array = convert_dataframe_to_array(rtable, r_proj_attrs, r_join_attr) # computes the actual number of jobs to launch. n_jobs = min(get_num_processes_to_launch(n_jobs), len(rtable_array)) if n_jobs <= 1: # if n_jobs is 1, do not use any parallel code. output_table = _edit_distance_join_split( ltable_array, rtable_array, l_proj_attrs, r_proj_attrs, l_key_attr, r_key_attr, l_join_attr, r_join_attr, tokenizer, threshold, comp_op, l_out_attrs, r_out_attrs, l_out_prefix, r_out_prefix, out_sim_score, show_progress) else: # if n_jobs is above 1, split the right table into n_jobs splits and # join each right table split with the whole of left table in a separate # process. r_splits = split_table(rtable_array, n_jobs) results = Parallel(n_jobs=n_jobs)(delayed(_edit_distance_join_split)( ltable_array, r_splits[job_index], l_proj_attrs, r_proj_attrs, l_key_attr, r_key_attr, l_join_attr, r_join_attr, tokenizer, threshold, comp_op, l_out_attrs, r_out_attrs, l_out_prefix, r_out_prefix, out_sim_score, (show_progress and (job_index==n_jobs-1))) for job_index in range(n_jobs)) output_table = pd.concat(results) # If allow_missing flag is set, then compute all pairs with missing value in # at least one of the join attributes and then add it to the output # obtained from the join. if allow_missing: missing_pairs = get_pairs_with_missing_value( ltable, rtable, l_key_attr, r_key_attr, l_join_attr, r_join_attr, l_out_attrs, r_out_attrs, l_out_prefix, r_out_prefix, out_sim_score, show_progress) output_table = pd.concat([output_table, missing_pairs]) # add an id column named '_id' to the output table. output_table.insert(0, '_id', range(0, len(output_table))) # revert the return_set flag of tokenizer, in case it was modified. if revert_tokenizer_return_set_flag: tokenizer.set_return_set(True) return output_table
def _edit_distance_join_split(ltable_list, rtable_list, l_columns, r_columns, l_key_attr, r_key_attr, l_join_attr, r_join_attr, tokenizer, threshold, comp_op, l_out_attrs, r_out_attrs, l_out_prefix, r_out_prefix, out_sim_score, show_progress): """Perform edit distance join for a split of ltable and rtable""" # find column indices of key attr, join attr and output attrs in ltable l_key_attr_index = l_columns.index(l_key_attr) l_join_attr_index = l_columns.index(l_join_attr) l_out_attrs_indices = find_output_attribute_indices(l_columns, l_out_attrs) # find column indices of key attr, join attr and output attrs in rtable r_key_attr_index = r_columns.index(r_key_attr) r_join_attr_index = r_columns.index(r_join_attr) r_out_attrs_indices = find_output_attribute_indices(r_columns, r_out_attrs) sim_measure_type = 'EDIT_DISTANCE' # generate token ordering using tokens in l_join_attr # and r_join_attr token_ordering = gen_token_ordering_for_tables( [ltable_list, rtable_list], [l_join_attr_index, r_join_attr_index], tokenizer, sim_measure_type) # cache l_join_attr lengths l_join_attr_list = [] for row in ltable_list: l_join_attr_list.append(len(row[l_join_attr_index])) # Build prefix index on l_join_attr prefix_index = PrefixIndex(ltable_list, l_join_attr_index, tokenizer, sim_measure_type, threshold, token_ordering) prefix_index.build(False) prefix_filter = PrefixFilter(tokenizer, sim_measure_type, threshold) comp_fn = COMP_OP_MAP[comp_op] sim_fn = get_sim_function(sim_measure_type) output_rows = [] has_output_attributes = (l_out_attrs is not None or r_out_attrs is not None) if show_progress: prog_bar = pyprind.ProgBar(len(rtable_list)) for r_row in rtable_list: r_string = r_row[r_join_attr_index] r_len = len(r_string) r_ordered_tokens = order_using_token_ordering( tokenizer.tokenize(r_string), token_ordering) # obtain candidates by applying prefix filter. candidates = prefix_filter.find_candidates(r_ordered_tokens, prefix_index) for cand in candidates: if r_len - threshold <= l_join_attr_list[cand] <= r_len + threshold: l_row = ltable_list[cand] # compute the actual edit distance edit_dist = sim_fn(l_row[l_join_attr_index], r_string) if comp_fn(edit_dist, threshold): if has_output_attributes: output_row = get_output_row_from_tables( l_row, r_row, l_key_attr_index, r_key_attr_index, l_out_attrs_indices, r_out_attrs_indices) else: output_row = [l_row[l_key_attr_index], r_row[r_key_attr_index]] # if out_sim_score flag is set, append the edit distance # score to the output record. if out_sim_score: output_row.append(edit_dist) output_rows.append(output_row) if show_progress: prog_bar.update() output_header = get_output_header_from_tables( l_key_attr, r_key_attr, l_out_attrs, r_out_attrs, l_out_prefix, r_out_prefix) if out_sim_score: output_header.append("_sim_score") # generate a dataframe from the list of output rows output_table = pd.DataFrame(output_rows, columns=output_header) return output_table